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ABSTRACT

The convergence of solutions to the discrete or sampled time linear quadratic regulator

problem and associated Riccati equation for infinite dimensional systems to the solutions

to the corresponding continuous time problem and equation, as the length of the sampling

interval (the sampling rate) tends toward zero (infinity) is established. Both the finite and

infinite time horizon problems are studied. In the finite time horizon case, strong continuity

of the operators which define the control system and performance index together with a

stability and consistency condition on the sampling scheme are required. For the infinite

time horizon problem, in addition, the sampled systems must be stabilizable and detectable,

uniformly with respect to the sampling rate. Classes of systems for which this condition can

be verified are discussed. Results of numerical studies involving the control of a heat/diffusion

equation, a hereditary of delay system, and a flexible beam are presented and discussed.
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1. Introduction. In this paper weconsiderthe convergenceof closed-loopsolu-
tions to discrete or sampledtime linear quadratic (LQ) optimal control problemsand
the associatedRiccati equations for infinite dimensional systems definedon Hilbert
spacesto the solutions to the correspondingcontinuous time problems and Riccati
equations,asthe length of the sampling interval tends toward zero. With the advent
and proliferation of micro-computers,and control tasks becomingevermore complex
(for example, the stabilization of large flexible spacecraft), the roles played by dis-
crete or sampled time control design techniquesand distributed parameter systems
have become increasingly more important. It has becomenecessary,therefore, to
develop extensionsof many of the familiar results for finite dimensional systems to
an infinite dimensional setting. One area that has recently receiveda great deal of
attention has been the LQ theory. Certain aspectsof the linear-quadratic approach
to control design for both continuous and sampled time infinite dimensional systems
have been studied extensively. In particular, theseaspectsinclude, for example, the
linear state feedbackstructure of the optimal control law, the optimal LQG estimator
and compensatorproblems.,boundary control, and finite dimensional approximation
(for specific references,seebelow). But to the best of our knowledge, however, the
inter-relation between the continuous and discrete time theories, which in the finite
dimensional caseis well understood, hasnot asof yet, beenlooked at in the context
of infinite dimensional systems. Sucha study would be useful, for example, because
typically in engineeringpractice, the discrete and continuous time LQ theories are
applied interchangeablywithout regard to asto whether or not the actual system is
continuous or discretein nature. In particular, dueto hardware constraints, most sys-
tems occurring in engineeringpractice are in fact discrete. However, if the sampling
is consideredto be rapid enough, the system may be treated as continuous when an
optimal control law, state estimator, or compensatoris designed. Our work is largely
motivated by the fact that the results we shall present here will serve to, in some
sense,justify this approach.

We note that in finite dimensions,wherestrong and uniform norm convergenceof
linear operators areequivalent,the continuousdependencewith respectto sampling of
the solution to the linear quadratic control problem and associatedRiccati equation
is straight forward. Indeed, in [Le] the continuous time theory is established by
first deriving the discrete time results, which are fundamentally algebraic in nature,
and then taking the limit as the length of the sampling interval tends toward zero.
However, in infinite dimensions,as is typically the case, the desiredconvergenceis
lessobvious. This is especially true in the caseof the infinite time horizon problem.
It is this problem that we addresshere.

We consider both the finite and infinite time horizon problems. In the caseof
the finite time horizon problem, under the assumption of strong continuity of the
operators which define the control system and performance index, together with a
stability and consistencyhypothesison the sampling scheme,we are able to deduce
the desiredconvergence.We must developan appropriate framework to facilitate the
comparisonof discreteand continuoustime operator families. For this purposewerely



heavily upon Kato's [K] treatment of discrete semigroups. In the caseof the infinite
time horizon problem wemust additionally assumestabilizability and detectability of
the discrete time systemswith somedegreeof uniformity in the sampling rate. The
notion of stabilizability/detectability uniform with respect to sampling will be made
precise in Section3 below. We areable to establishthat if the continuoustime system
is stabilizable and detectablevia finite rank feedback,and if zero-orderhold sampling
is employed, then the resulting discrete time systemsare uniformly stabilizable and
detectable for sufficiently small sampling interval. We also have a result concerning
the uniform stabilizability and detectability of parabolic systems.However,this result
will not be discussedhere,but rather in a forthcoming manuscript.

Our treatment is functional analytic in nature, and is similar in spirit to the many
recent studies of convergenceof solutions to LQ control and estimation problems
and the associatedRiccati equations under state (space) approximation (i.e. finite
difference, modal, or finite element, for example). See, for example, [BK], [BW],
[G],[GA], [GR], and [W]. For the discrete time LQ theory for infinite dimensional
systems,we rely heavily on the well known results contained in [HH], [LCB], and [Z].

In addition to our theoretical results, wehave included the results of someof our
numerical convergencestudies. We present and discussour findings for the infinite
time horizon LQ optimal control problems for a one dimensional heat or diffusion
equation, a one dimensional hereditary or delay system, and a hybrid system of or-
dinary and partial differential equations describing the small amplitude transverse
vibration of a cantilevered Voigt-Kelvin viscoelasticbeam with tip mass.

An outline of the remainder of the paper is as follows. In section 2 we treat the
finite time horizon problem. The infinite time horizon problem is consideredin the
third section. Our numerical results are presentedand discussedin Section 4, while
a brief fifth section contains a summary and someconcluding remarks.

2. LQR Problems with Finite Time Horizon. In this section we consider
the linear quadratic regulator (LQR) problem over a finite time interval. The basic
notation and our general assumptionsare introduced in the statements of both the
continuoustime and correspondingsampledtime problemsgivenbelow. The existence
and uniquenessof the optimal control aswell as its closedloop feedbackstructure can
be obtained using a variety of approaches. Here we opt to consider the optimal
control problem as the minimization of a strictly coercive quadratic form on the
admissible control space. This approach yields an explicit representation for the
solution of the usual Riccati equations (for both the continuous and sampled time
problems) in terms of the underlying system and penalty operators which define the
problems. Sincethe particular focusof our effort hereis the considerationof sampled
time problems as approximations to a continuous time problem, specializednotions
and characterizations of convergencemust be introduced. Once this is done, our
fundamental result for the finite time horizon problem can bestated in terms of these
specializednotions of convergenceasfollows. The convergenceof the optimal control
and the optimal feedbacklaws for the sampledsystemsto the optimal control and
feedbacklaw for the continuous time problem as the length of the sampling interval
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tends to zero, follows directly from the convergence of the open-loop sampling of the

underlying linear control system and quadratic performance index. We consider the

open-loop sampling of the infinite dimensional LQR problem in an abstract setting so

that our results can be applied to a wide range of sampling procedures.

Let H and U be Hilbert spaces with inner products < .,. >H and < .,. >v

respectively. Let to,tf E R be given with to < tl, and let T = {T(t,s) :to < s <

t < t/} be an evolution system on H. For each t C[to, tf], let B(t) C L(U,H),

Q(t) c L(H), and R(t) e L(U), and let G e L(H). We consider the continuous time

LQR problem given by

(P) Determine a control input fi C L2(to,t/; U) which minimizes the quadratic per-

formance index

J(u;to, x(to),G) = < Gx(tf),x(tf) >H

+ {< Q(t)z(t),x(t) >H + < R(t)u(t),u(t) >v}dt
0

where for each t C.[to, t/] the state x(t) C H is given by

I'(2.1) z(t) = + T(t,r)B(T)u(T)ar, to <_s < t < t:.

We make the following standard assumptions on the operator families {T, B, G, Q, R}

which determine problem (P).

(C1) The evolution system T is strongly continuous on H and therefore is uniformly

exponentially bounded, with constants M > 0 and w E R. That is

tIT(t,s)IIL(H) <_ Me _(t-s), to <_ s < t <_ tf.

(C2) The operator valued functions B, Q, and R are strongly continuous and there-

fore are uniformly bounded on [to, t f]. That is, there exists a constant C > 0

for which

IIB(t)IIL(tr,H) <_C, IIQ(t)IIL(H) <_ C, IIR(t)llL(v} <_ C,

t e [to,t:].
(C3) The operator G and the operators Q(t) and R(t) for each t E [to,tf] are self-

adjoint and nonnegative definite. Moreover, there exists a constant r > 0 for

which R(t) > rI, t e [to, t:].

The strong continuity assumption in (C2) is not necessary for the well-posedness

of the LQR problem. However, some assumptions on the continuity of the operators

B, Q, R will be needed to obtain uniform convergence with respect to sampling.

The closed-loop linear state feedback form of the solution to problem (P) can

be shown to exist and be explicitly constructed by considering the minimization of

appropriately constructed strictly coercive quadratic forms on the Hilbert spaces U, =

L2(s,t.t;V), s e [to,tl] (see, for example, [G]). Since it will play a prominent role in



our discussions to follow, we briefly outline this approach here. For each s E [to, t!]

define the operators /3, E L(H, _l,) and _, E L(_/,) by

(2.2) (/3,¢) (t)= B(t)* {T(tf,t)*GT(tf, s) + ftt' T(_,t)*Q(rl)T(rl,s)drl} ¢,

for ¢ E H, t E [s, tl] , and

(2.3) (]_,u,)(t) = R(t)u,(t) + S(t)*T(tl,t)*G ff' T(ts,_?)B(rl)u,(rl)drl

for t E [s, tl] and u, E _/,. It is not difficult to verify that the adjoint operator

/3; E L(_d,, H) of/3, is given by

(2.4) /3,,_, = r(ts, s)'a r(ts, t)B(t)u°(t)dt

and that for u, E _/,, we have

g(u,;s,x(s),G) =< GT(ts, s)x(s),T(ts, s)x(s ) >H

+ < Q(t)r(t,s)x(s),r(t,s)x(s) >_ dt- < _-21/3.x(s),/3.x(s) >u.

+ < ._s(U$ + _;1/3,X(S)),U._ -_- )_;1/3,X(S) >/./. •

It follows that for x(s) E H given, J(.; s, z(s), G) is minimized by choosing u, = fi_ =

-R-_l/3,x(s) E U,. We then obtain

ming(.;s,x(s),G) = J(fi,;s,x(s) G)
11,

f"= < ar(ts,_)x(s),T(ts, s)x(_) >. + < Q(t)r(t,s)_(s),r(t,s)_(s) >. dt

- < _-;_/3_(s),/3.x(s) >u.
= < H(s)x(s),-_:(s) >.

where the self-adjoint operator valued function II :[to, ts] _ L(H) is defined by

(2.s) rI(s)¢ = r(ts, s)'ar(ts,s)¢+ r(t,s)'Q(t)r(t,s)¢dt

_._-_n _

Using the definitions given above, the following theorem concerning the existence and

characterization of the closed-loop solution to problem (P) can be established.

THEOREM 2.1. Suppose that assumptions (C1)-(C3) are satisfied. Then for

any initial state x(to) E H given, there exists a unique solution fi to problem (P). The

optimal control a is given in linear state feedback form by

fi(t) = -R(t)-'B(t)*H(t)_(t),t E [t0, tf]
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where _. is the optimal trajectory. The operator valued function II is given by (2.5)

and it is the unique self-adjoint solution to the Riecati integral equation

(2.8) n(t) T(tl, t)*GT(tf, t)

+ f" TCr, t)* {QCr) - II(r)B(r)R(r)-l B(r)*II(r) } T(r,t) dr,
Jt

t E [to, ty]. We have

(2.7) rain J(.;to,x(to), G) = J(a;to, x(to), G) =< II(to)x(to),x(to) >H .
U,

We consider next the discrete or sampled time problem. Let k0, k! E Z with

k!>koandlethERwithh>0. ForkEZwithk0<_k<k l- l let Ah(k) EL(H),

and let {Th(k,j) : ko < j <_ k < k/} be the discrete time evolution system on H given

by

k-1

Th(k,k) = I, Tu(k,j) = Ah(k-1).Ah(k-2)...Ah(j) = II Ah(i), ko <_ j < k < kf.
i=i

(2.8)
kl-I k kf-1 kf-1Let {Bh(k)},=,o, {Qh( )}_=*o, and {Rh(k)}k=ko be sequences in L(U,H), L(H) and

L(U) respectively, and let Gh E L(H). The LQR problem is then given by

(Ph) Determine a control input _/h E 12(ko, kf - 1; U) which minimizes the quadratic

performance index

Jh(ua;ko,X.(k0),a.) =< ahx.(k_),_(k_)>.
kf- 1

k=ko

where for each k E Z with ko < k < kl, the state xh(k) E H is given by

(2.9)
k-1

xh(k) = Th(k,j)xh(j) + h _ Ta(k,i + 1)Ba(i)uh(i),
i=1

forko_<j <k<_kf.

For the discrete time case, we make the following assumptions.

(D1) For each h > 0 the operators Aa(k), Bh(k), Qa(k), and Rh(k) are bounded in

k for ko <_ k <_ kf - 1. Thus, there exists a constant Ca for which

[IAh(k)NL(H) <_Ch, IIBh(k)IIL(V,H) _<Ch,
IIQ_,(k)IIL(H)<_Ch, [IRh(k)llL(t_)_<Ca,

fork0 <k_Kk!-l.



(D2) The operator Gh and the operators Qh(k) and Rh(k) for ko <_ k <_ k/- 1 are

self-adjoint and nonnegative. Moreover, there exists a constant rh > 0 for

which Rh(k) > rhI, ko <_ k < k/- 1.

Note that assumption (D1) together with (2.8) yield that the discrete time evolution

system {Th(k,j) :k0 _< j _< k _< kf} is uniformly exponentially bounded with

IITh(k,j)llL(.)<_c2-i, ko<_j <_k <_k_.

Note also that the discrete'time evolution equation (2.9) is equivalent to the discrete

time dynamical system given by

(2.10) xh(k + 1) = Ah(k)xh(k) + hBh(k)uh(k), ko <_ k < k!- 1, xh(k0) E H.

For each h > 0 and j = ko, ko + 1,...,kf - 1, let _/hj" = 12(j, kf - 1;U) endowed

with the inner product

kf-1

< uh,i,.h,_>u_,s=h _ < u.,;(k),.h,i(k) >_.
k=j"

Define the operators Bh,i E L(H, _lhZ) and ;_h,_' E L(llh,i) by

(2.11) (s_,_¢)(k) Bh(k)'r_(k_,k + 1)'ahT_(k_,j)¢

+Bh(k)* h _ Th(i,k + 1)*Qh(i)Th(i,j)
i=k+l

for ¢ E H, k = j,j+ 1,...,k I - 1, and

,

(2.12)

kt-1

+Bh(k)*Th(kl,k + 1)*Ghh _ Th(kl, i + 1)Bh(i)uhd(i)
i---j

+Bh(k)*h __, Th(i,k + 1)'Qh(i) h __Th(i,l + 1)Bh(l)uh,i(l) ,
i=k+ l l=$

Uh.i E _lhd, k = j,j + 1,... ,k I - 1, respectively, where in the above expressions and

throughout the remainder of the paper we adopt the convention that _;_=_a_ = 0

whenever _, < _. It is not difficult to verify that the adjoint of Bh,;, the operator

B;, i _ L(/./_,d, H) is given by

(2.13) B;,juh,j =

kl-1

Th(kl,j)'Ghh _ Th(kl,k + 1)Bh(k)uh,_(k)
k=y

h _ rh(k,j)*Qh(k) h_ rh(k,i + 1)B.(i)uh,_(i)
k=j+l i=j
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for uh,i E Uh,j.

Proceeding as we did in the continuous time case, we find that for j = k0,--., k/-

1, xh(j) E H, and uh,j 6 L/h,1

Jh(Uh,;;j, xh(j),G_) < GhTh(k/,j)xh(j),Th(k/,j)zh(j) >H

k:-I

+h _ < Qh(k)Th(k,j)xh(j),Th(k,j)xh(j) >H
k-=j

- < ]eh,._h,:hO),Sh,:h(j) >U_,i
-1+ < ]eh,i(uh,i+ _h,iS_,:h(j)),u_,i + ]e;,}8h,:h(j) >Uh,j,

where the existence of the inverse of ._h,i is quaxanteed by assumption (D2). It

is immediately clear that for j E Z with j 6 [k0, k/- 1] and xh(j) E H given,

Jh(';j, xh(j), Gh) is minimized when uh,_ = fib,j = --_-_,_h,lxh(j). It follows that

min Jh('; j, xh(j), Gh) = J_(_,j;j,x.(j),a_)

= < GhTh(kI,j)zh(j),Th(k/,j)xh(j) >H

kI-1

+h _ < Qh(k)Th(k,j)xh(j),Th(k,j)xh(j) >H
k=]

- < ,_-_,}Bh,jxh(j),Bhjxh(j) >uh,i

= < IIh(j)xh(j),zh(j) >H,

where the sequence of self-adjoint operators in L(H), k:-I{IIh (k) }k=ko, are given by

(2.14) IIh(j)¢

kl-1

Th(k!,j)*GhTh(kI, j)¢ + h _ Th(k,j)'Qh(k)Th(k,j)¢

* --1

- Bh,__ h,jBh,_¢,

for k -- k0,..., k/- 1 and ¢ E H. We note that it is completely consistent to define

nh(k!) = Gh.

Using the above definitions, it is possible to establish the following well known

result (see, for example, [LCB], [Z], and [GR]) for the discrete time LQR problem

(Ph).

THEOREM 2.2. Suppose that assumptions (D1) and (D2) are satisfied. Then for

any given initial state zh(ko) E H there exists a unique solution fth _ l:(ko, k/- 1; U)

to problem (P_). It is given in linear state feedback form by

f_(k) = -Rh(k)-'Bh(k)*Hh(k + 1)A_(k)2h(k), k = ko,...,k f -- 1,

where Rh(k) = Rh(k) + hBh(k)'IIh(k + l)Bh(k), for k = ko,'",k I-l, and the optimal

trajectory _h is given by (2.9) (equivalently (2.10)) with u_ = f_h. The sequence of



_kf-1operator in L(H), o are given (2.14)  ith Hh(kf) = and be
obtained recursively via the Riccati difference equation

(2.15) IIh(k) = Ah(k)*IIh(k + 1)Ah(k)

-hah(k)*Hh(k + 1)Bh(k)Rh(k)-lBh(k)*IIh(k + 1)ah(k)

+hQh(k),

k= kf-1,...,ko, Hh(kf) =Gh. We have

(2.16) minJh(';ko, xh(ko),Gh) = Jh(fth;ko, xh(ko) Gh)
12h,ko

= < nh(k0)x (ko),X (k0)

For appropriate choices of the families of operators Th, Bh, Qh, and Rh, we are

interested in studying the convergence of solutions to the problems (Ph) to the solution

of problem (P) as the length of the sampling interval, h, tends toward zero. In

particular, we want to investigate the convergence of the discrete families of Riccati

operators {IIh(k) : k0 _< k < kf} to the continuous family of operators {II(t) : to _<

t<tf}.

In _ --ler to reduce the necessary degree of technical detail, we make the simplifying

assumption that to = 0. There is of course no loss of generality in doing this since

any system can be transformed to one on a time interval starting at the origin. Set

k0 = 0 and for each h > 0 let k/ = ky,h = [ty/h] where for a E R, [a] is used to

denote the greatest integer less than or equal to a. Let ty,h = hky,h and note that

limh--.o+ t f, h -_ t f .

In order to compare discrete and continuous families of operators, it is useful to

identify certain 12 sequence spaces with subspaces of L2. For X a Hilbert space and

all h > 0, let L2,h(O, tf,h; X) be the subspace of L2(O, ty,h;X ) defined by

L2,h(O, tf,h;g) -_ {alp E L2(O, tf,h;X) : _ is constant on each of the intervals

[O,h),[h,2h),...,[(kf,h- 1)h, tLh)}.

Note that the subspace L2,h(O, tLh; X) of L_(O, tf,h; X) is isometrically isomorphic to

the space lz(O, kf,h - 1; X) endowed with the inner product

kl, h-1

f A _. kf,h-I f_/,._ kf'h-1
< t_'JJj=0 ,t_JJj=0 >=h _ <¢J,¢i>x.

j=0

Let _/ = L2(O, tI;U) and let /2h = L2,h(O, tf, h;U). Let Ph E L(_l,_lh) be the

orthogonal projection-like mapping of _/ onto _/h defined by

kl,h-1

(Ph¢)(t) = _ (¢h)jxb(t), 0 < t < tf,h,
j=0

for ¢ E _/ where for j = 0, 1,..., kf, h - 1, Xb is the characteristic function for the

interval Ij = [jh,(j + 1)h) and

(¢h)j = h -1 1 ¢(t)dt.
J/ J

8



It is not difficult to show (see Appendix A) that

(i) the net (ltPhtlL(U.Ut,)}h>O is uniformly bounded;

(ii) limb-.0+ IIPh¢Iluh = II¢llu, ¢ E //, and

(iii) for each ¢ E _/h there exists a ¢ E _/ such that _b = Ph¢ and II¢llu -- [l¢[luh.

Following Kato [K, §IX.4] we say that a net {Oh}h>0, Oh E /2h converges to ¢ E _/

(Oh ---* ¢, or limb-.0+ Oh = ¢) if

lim IlOh- Ph¢llu = 0.
h---*0+

Also, if for h > 0, Oh E L(Uh), then we say that Oh converges strongly to • E L(/./) if

OhPh¢ --* ¢¢, ¢ E U; that is if

lim IIOhPh¢-- PhO¢IlUj, = O, ¢ • _l.
h--*O+

With strong operator convergence defined in this way, it can be shown that OhPh¢ --_

0¢, ¢ • U implies that the net {IIOhlIL(U,)} is uniformly bounded and that if OhPh¢

O¢,and qJhPh¢ --* k_¢, ¢ • U, then Oh_hPh¢ --_ O_P¢, ¢ • _/, etc. We note of course

that an analogous definition of strong convergence can be made for bounded operators

having only one or the other of its domain and co-domain being Uh. That is, for

example, if Oh • L(X, Uh) and • • L(X,U) where X is a normed linear space, then

we say that Oh converges strongly to • if OhX --* Ox, x • X, or

lim IlOhX-- PhOxHu , = O.
h-*0+

Following the treatment of discrete semigroups in Kato [K], we make the following

formal definition.

DEFINITION 2.1. The discrete time families of bounded linear operators Oh =

{Oh(k,,,k,,_l,...,kl) : 0 _< k_ _< ks _< ... _< k,, _< gh}, h > 0 from a Banach space

X into a Banach space Y will be said to (strongly) approximate a continuous time

family of operators • = {¢(t,,,tn__,...,t_) : 0 <_ tl <_ t2 <_ "" <_ tn <_ T} with

¢(t,,,...,tl) • L(X,Y) for t = (tn,'",tl) • A(n,T) = {(t,,,t,_-l,...,tl) • R '_ : 0 <_

tl <_ t2 <__"" <_ t,, _ T}, at i = (i,,,...,[1) • A(n,T), if

(i) There exists at least one net of multi-indices {/_h}h>0, k = (_:,,,h,""" ,_:l,h) • Z n

with 0 < kl.h <_ "'" <_ kn.h <_ Kh and limb--.0+ hkh = [.

(ii) For all nets {]%}h>0, satisfying (i) above,

lim [lOh(Ich)X -- ¢(t")Xl[ Y = O,X • X.
h_0+

The families Oh, h > 0 will be said to approximate ¢ on the set A(n, T), if Kh = [T/h]

and if Oh approximates ¢ at each t• A(n,T).

When the discrete time families Oh, h > 0 approximate the continuous time family

O at time t (on the set A(n,T)) we shall write Oh _ • at time { (on the set A(n,T)).

DEFINITION 2.2. For h > 0 and Oh = {Oh(k,,k,-1,...,kl) : 0 _ kl __ ks __

• -. < kn < Kh} a discrete time family of bounded linear operators, we define an

9



associatedcontinuous time family of operators, Ch = {¢h(t,,,t,,-1,.",tl) : 0 < t_ <

t2 + h < ... < t, + h < (gh + 1)h} via _h(t,,'",tl) = _h([t,/h],...,[tl/h]) for

t = (t,,,..-,t,) E Ah(n, gh) = {(t,,t,_,,...,t,) E R _' : 0 _< tl < t2 + h < ... <

t,_ + h < (Kh + 1)h}.

Note that when Kh --[T/h], A(n,T) C Ah(n, Kt`) for all h > 0.

The proof of the following theorem can be argued in much the same manner as

were the proofs of Lemmas IX.3.4 and IX.3.5 in Kato [K].

THEOREM 2.3. Suppose that the continuous time family of bounded linear opera-

tors _ is strongly continuous on ZX(n, T) and that _t`, h > 0 are discrete time families

for which Ct` _ • on the set ZX(n,T). Suppose further that for each h > O, _t` is

the continuous time family on At`(n, Kt`) corresponding to the discrete time family _t`

constructed according to Definition 2.17 above. Then

(i) The families Ct`, h > 0 are uniformly bounded in h in L(X, Y); that is there

exists a constant M > 0 independent of h for which

[[(I)h(kr_,lCr,-l,""" ,kl)HL(X,y ) <_ M, 0 < k 1 <_ k 2 <_ ... _ krL _ gt`,h > O,

(ii) (_t` _ • uniformly.in t for t e A(n,T); that is

lim l[¢t`(t)x - ¢(t)xl[r = O,x • X,
h---*0+

uniformly in t for t = (t_,...,tl) • A(n,T).

Conversely, if Kt` = [T/h] and Ot` --_ ¢ uniformly in t for t • A(n,T), then Ct` --_ ¢

on the set A(n,T).

Let the continuous time families T = {T(t,s) : 0 < s < t < T} C L(H),

S = {B(t) : 0 <_ t <_ ts} C L(U,H), Q = {Q(t) : 0---_< t-_< t_ c L(H) and

R = {R(t) : 0 < t < ts} c L(U) be as given in the statement of the continuous time

LQR problem (P) (i.e., in particular assume that the conditions (C1)-(C3) hold).

For h > 0, let ks, t` = [t//h ] and let At, = {At`(k) : 0 < k <_ ks.t`- 1} C L(H),

Bt` = {Bt`(k) : 0 < k <_ kAt`- 1} C L(U,H), Qt` = {Qt`(k) : 0 __ k <_ ks,h-- 1} C L(H),

and Rt` = {Rt`(k) : 0 <__k _ k/,t` - 1} C L(U) be discrete time families of bounded

linear operators which satisfy conditions (D1) and (D2) and which satisfy the following

conditions.

(A1) Bt` _ B, Qt` _ Q, Rt` ---* R, and B_ ---* B* on the set /\(1, ts) where B* =

{B(t)* : 0 < t < t/} and B_ = {St`(k)* : 0 <_ k <_ kS,t` }.

(A2) (a) (Stability) The discrete time families of operators Ta = {Th(k,j) : 0 <_ j <_

k <_ ks,t` } c L(H) given by

{ _[I1At`(i), j < k,
Th(k,j) = ,=,

I, j=k

are uniformly bounded in L(H) for h > 0.

10



(An)

(b) (Consistency)

lim hllT_h (t
h-.,0 +

and

+ h,t)¢ - T(t + h,t)¢ll = O, CE H,

lim hll:i'h(t + h,t)*¢- T(t + h,t)*¢ll = 0, ¢ E H,
h---*0+

uniformly in t for t E [0, tl}.

The scalars rh given in the statement of condition (D2) are bounded away from

zero uniformly in h. That is rh _> r > 0, h > 0.

LEMMA 2.1. Condition (A2} implies that Th --* T and TT, _ T* on the set

A(2,ts).

Proof. We consider the convergence Th _ T only; the adjoint convergence is com-

pletely analogous. Following the proof of the well known Lax-Equivalence Theorem

[RM], the result is an immediate consequence of condition (A2), the strong continuity

of the continuous time family T, and the identity

{ _Th(k,i+l){ah(i)-T((i+l)h, ih)}T(ih,jh)¢, k>j,
Th(k,j)¢-T(kh, jh)¢ = ,=j

O, k = j,

0__3"<_ k __ kf,h , CEH. (-7

We shall also assume that G E L(H) is as in condition (C3) and that for each

h > 0 the operator Gh E L(H) satisfies condition (D2). We require that the additional

approximation condition

(A4) limb--.0+ Gh¢ -- G¢, ¢ E H,

be satisfied as well.

For h > 0 and s E [0, ts] define _h,, E L(H, Uh) by

For t E [0, ts,h - hi:

X[[#hlh,t,,_l(t)Bh(t)*{7"h(tl,n,t + h)'GhT"h(t,,h,s)
ftf,h ~ .

(2.17) (Bh,s¢)(t) = + JtC,+h)/hlhThCrl't + h)'Qh(o):Fh(rj,s)drj}¢,

For t E [tS,h -- h, ts,h] :

(_h,s¢)(tf,h--h),

when s E [0, ts,h ), and by (Bh,,) = 0 when s E [tf.h,ts], for ¢ E H.

3" = 0, 1,2,... ,ks, h - 1, k = 3',J + 1,... ,kf, h -- 1, and ¢ E H

(2.18) (_a,,¢)(t) : (_h,i¢)(k),

for s E [jh,(j + 1)h) and t E [kh,(k + 1)h), where for j

_h,j E L(U, Uh,:)is given by (2.11).

11
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Similarly, for s E [0,tf] define Bh,_'*E L(l.lh, H) by

(2.19) "" " "fi;';h_(ts.h,_h,ouh = Th(tf,u,s) G_ t + h)$h(t)uh(t)dt

}+ JlC,+h)lhlh tXl°/hi h Th(r,r# + h)Dh(_)uh(_)d_ dT,

when s E [0,ts,h ), and by Bh,,uh = 0 when s E [ts,h, ts] for uh E _/h. Note that for

j = 0, 1, 2,..., kf, h - 1 and uhd E _/h,j we have

ti_,,uh= S;,su_,j(2.20)

for s E [jh, (j + 1)h) when uh E _/h is given by

(2.21) _(t) = / 0, 0 < t < jh
uhd(k), kh <_ t < (k + l)h,t

k = j,j + 1,...,kl,h -- 1, and B;,j E L(_lh,j,H) is given by (2.13). Note also that

-* " * "* L(_/h,H) given by (2.19) is the Hilbert spaceBh,, ---= (Bh,,) • That is that Bh, s E

adjoint of the operator _h_,, E L(H, Uh) given by (2.17) for all s E [0, tf].

For s E [0, ts] define _,, E L(Uh) by

(2.22) (sL.,u_)(t) =

For t E [0,ts,h - hi:

[_h(t)uh(t) + _l[,Ihlh,,s,hl(t)Bh(t)"
ftf,h ~ .

Ts_(ts,h, t + h)*ah 7lolhlhTh(tf,h,r# + h)[Th(rl)uh(r#)dr#

• tf,h ~ , "
-f Th(rl,t + h) Qh(rl)

.S[(t+h)/hlh
[ r[./hlh . . ' )

For t E [ts,h- h, ts,h ] :

(sD,,,,_,,)(ts,+,- h),

when s E [O, tl,h ) and by (_h,.uh)(t) = [lh(t)uh(t), 0 <_ t < ts,h , when s E [tLh, tf], for

uh E //h. We again have that for j = O, 1, 2,..., kf,h -- 1, k = j,j + 1,. •., kf, h - 1, and

Uh,j E Uh,j,

(2.23) (L,,,,_,,)(t)= (,_,,,su,,,;)(k)

for s E (jh,(j + 1)h) and t E [kh,(k + 1)h), where uh E _/h is given by (2.21) and

_h,i E L(TAh,_.) is given by (2.12). We note also that _,,, is self-adjoint and positive

definite on _/_ and that if we let _t,,j denote the subspace of _/t, obtained from Ut,,j.via

the natural embedding (i.e. via (2.21)), then, J_h,, is a bijection from _,i onto _/h,_..

It follows therefore from (2.17), (2.19), (2.22) that for j = 0, 1, 2,..., kf,h - 1

(2.24) * -1 ", "-l."

12



for each ¢ E H and all s E [jh, (j + 1)h), and that

(2.25) h,s h,a h,3q _ --

for all s E [tf_.h, tf].

Setting l-[h(8) = IIh(k), kh < s < (k + 1)h, for s E [0, tl], from (2.11), (2.12),

(2.13),(2.14),and (2.24)we find that

(2.26) fEh(s)¢ _,,(ts,,,s)'C,,_',,(t_,,,,s)¢
/'tl,h ~ . .,

Bh,,_h,,Bh,,¢+ ]t,/_iT_Ct,_)Ch(t)_(t,s)_dt-"" "-'"

for each ¢ E H. Note that (2.25) implies that Hh(t) ----Ch for t E [tf.h,t/.].

For B, E L(H,U,), _, E L(U,),and B: E L(_/o,H) given by (2.2), (2.3), and (2.4),

respectively, define/_, E L(H, LI), _, E L(_I), and B: E L(_l,g) by

($,¢)(t) = / o, 0 < t < _,(2.27) (&¢)(t), _ < t < ts,[

R(t)u(t), 0<t<s,(2.28) (_.u)(t) = (n..)(t), . < t < ts,

and

(2.29) _:. = s;.

for ¢ E H and u E _1. It is not difficult to show that _," = (/_,)* (i.e. that/_," E L(_I,H)

is the Hilbert space adjoint of 6, E L(H, _l)), that _, is self-adjoint positive definite on

_l, and that if we let _, denote the subspace of U obtained via the natural embedding

of Us into U, then _s is a bijection from _s onto _,. Consequently, if follows that

(2.30)
* --1 ~* ~--1 ~

for all ¢ E H and s E [0, tf]. From (2.5) we obtain that

(2.31) n(s)¢ T(t/,s)'GT(tI, s)¢ + ¢/ 'I T(t,s)*Q(t)T(t,s)¢dt

__:_-_$ $¢'

for all ¢ E H and s E [0, tf].

Our fundamental convergence or approximation result for the finite time horizon

problem is given in the following theorem and its corollary.

THEOREM 2.4. Suppose that the families of operators (T, B, Q, R} satisfy con-

ditions (C1)-(C3) and that for all h > O, the families of operators (Th, Bh, Qh, Rh}

satisfy conditions (D1) and (D2). Suppose further that the approximation assumptions
13



(A1)-(A4) are satisfied. Then the discrete time family of operators Hh = (Hh(k) : 0 <_

k <_ kf,h} given by (2.14) or (2.15) strongly approximates the continuous time family

of operators H = (H(t): 0 < t < tf} given by (2.5) or (2.6) on the set A(1,t/). That

is, IIh ---* H on the set A(1,tf).

Proof. The desired result will follow from Theorem 2.3 if we can argue that

limb--.0+ l:[h(t)¢ = II(t)¢, uniformly in t, for t E (0, tf], for each ¢ C H, where l:[h and

H are given by (2.26) and (2.31), respectively.

From assumption (A3), we have that the operators _h,, are bounded uniformly

in h > 0 and s E [0, tf]. Somewhat technical, but rather elementary arguments can

be used to show that 3h.,¢---* 3,¢, for all ¢ e H, f_h,,Phu _ f_,u for. ~u E _/, and

3h,s""3, u, for u E _/ uniformly in s for s C [0, t/], where 3h,,, 30, _h.,, _s, ~*

and 3; are given by (2.17), (2.27), (2.22), (2.28), (2.19), and (2.29) respectively (see

Appendix B). This together with the identity

 h,sPh Phi: 1 "-1 "- : 1

yield that limb--.0+ 3_:._;.1,$h.,¢-- _,_-1_,¢, for ¢ E H, uniformly in s for s • [0, tf].

The desired convergence can then be obtained from assumptions (A1), (A2), (A4)

and equations (2.26), (2.31).

Let F = (F(t) : 0 < t < t f) and S = (S(t,s) :0 < s < t < t f} be respectively the

continuous time families of optimal closed-loop feedback gain operators and optimal

closed-loop state transition operators for the continuous time LQR problem (P). That

is, for t • [0, tf]

r(t) = R(t)-lB(t)*H(t) • L(H,U),

and for 0 _< s < t _< t I

jfs t(2.32) S(t,s)¢ = T(t,s)¢- T(t, rl)B(rl)F(rl)S(rt,s)¢&l

= T(t, s)¢ - T(t,_)B(rl)(g-j_3:¢)(rl)drl,

for ¢ • H (see [G]). Similarly, for the discrete time problem, let the discrete time

families, Fh = {Fh(k) : 0 < k <_ kf.h - 1} C L(H, _/) and Sh = (Sh(k,j) : 0 < j < k <

kf,h} C L(H) be given by

Fh(k) = Rh(k)-lBh(k)*Hh(k + 1)Ah(k),

where

= R (k) + hB (k)'H (k +

k=0,1,...,kLh- 1, and

(2.33) Sh(k,j)¢ =

k-1

Th(k,j)¢- h _ Tn(k,i + 1)Bh(i)Fh(i)Sh(i,j)¢
i=1

k-1

Th(k,j)¢ h_Th(k,i+ 1)Bh(i) -_ * "= _
i=i

14



O <_j <_k < kl,h, for CE H.

COROLLARY 2.1. Suppose that the hypotheses of Theorem '2.4 above are satis-

fied and let {_,2} and {fih,5:h} be the optimal control/trajectory pairs for the LQR

problems(P) and (P.), respectively,corres_ndCn9to the initial data =(0)= =h(O)=
Xo E H. Then

(i) Fh _ F ;

(iii} lim),_.o+ rlah(kh)--_(t)[lv = O, and limh-.o+ II_h(kh)-_(t)lIH = O, for t E [O, tf]

and for all nets {kh}a>o Jot which lima-o+ hka = t.

(iv) limb--.0+ o_ = J.

ProoJ. Statement (i) and (iv) (recall (2.7) and (2.16)) are immediate consequences
of Theorem 2.4. Stateme;nt (iii) follows from statement (i) and (ii) since a(t) =

-F(t)e(t), e(t) = S(t,O)zo, t _ [0,tl], and ah(k) = -Fh(k)eh(k), 0 < k < kl,h- 1,
eh(k) = Sh(k,O)Zo, 0 <_k < kl.h. Thus we need only to verify statement (ii).

We rewrite (2.32) as

/)s(t,s)¢ = T(t,s)¢ - T(t,n)B(n)(_; ls,¢)(,)dn,'"

and from (2.33) we obtain

f[t/h]h _ 1 *
Sh(t,s)¢ = Th(t,s)¢- Jl,/hlh Th(t, rl + h)Bh(rl)(_h,,Bh.,¢)(rl)drl.--

The result now follows as in the proof of Theorem 2.4 []

REMARK In actual practice, given the continuous time LQR problem (P), the

net of discrete time problems {(Ph)} is typically obtained by considering zero-order

hold (i.e. piecewise constant) control inputs and output sampling. In this case we

would obtain Ah(k) = T((k + 1)h, kh), Bh(k) = h -1J_hr(k+l)hT(( k + 1)h,s)B(s)ds,

Qh(k) = h-1Jkhl'(k+l)h Q(s)ds, Rh(k) = h-1 Jkhr(k+l)hR(s)ds, and Gh = G. When con-

ditions (C1)-(C3) on the continuous time families T, B, Q, and R are satisfied, it is

immediately clear that th6 discrete time families Th, Bh, Qh and Rh, and the oper-

ator Gh satisfy conditions (D1) and (D2) and the approximation conditions (A1)-

(A4). More generally, other discretizations are also admissible. For example, in the

time invariant case, the semigroup {T(t) : t >_ 0} could be discretely approximated

using A-stable Pad6 approximants to the exponential (see [HK]). In particular, if

T(t) = exp(tA), t > 0, then one might set Th(k) = (I- hA) -_ (implicit Euler) or

Th(k) = (I- hA/2)-_(I + hA�2) k (Crank-Nicolson). The stability and consistency

of these discretizations (i.e. assumption (A2)) can be verified using the theory and

techniques developed in [HK]. Finally, along these same lines, the convergence of si-

multaneous but independent state and time discretization in the context of the LQR

theory should also be looked at. We note that appropriately "coupled" state and

time discretization can be handled using the theory and framework which has been

developed above.
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3. The Infinite Time Horizon Problem. The linearquadratic regulator prob-

lem over an infinitetime interval can be viewed as an extension of the finitetime

intervalproblem. The state equations (2.1)and (2.9)governing the dynamics of the

continuous time and discretetime control systems, respectively,remain the same. The

continuous and discrete time operator families{T,B, Q,R}, and _Th, Bh, Qh, Rh} are

assumed to be defined on the infinitetime intervals[to,%cx)) c R and [k0,+oo) C Z,

respectively.The cost functionals are taken to be

(3.1) t0,x(t0))
OO

= {< Q(t)x(t),x(t) >H ÷ < R(t)u(t),u(t) >u}dt
0

= lim J(u;to,x(to),O)
t f ---*oo

and

OO

= h _ {< Qa(k)xa(k),xa(k) >H + < Ra(k)ua(k),ua(k) >u)
k=ko

= lim Jh(uh;ko, xh(ko),O)
kl---,oo

Under appropriate stabilizability and detectability assumptions on the continu-

ous time and the discrete time control systems, the existence and the uniqueness of

the optimal controls u, uh minimizing (3.1) and (3.2), respectively, can be obtained.

Moreover, these optimal controls can be written in a closed-loop state feedback form

(see Theorem 3.1 below). We are again interested in investigating the convergence of

the optimal controls and the optimal feedback laws for the sampled systems as the

length of the sampling interval tends toward zero.

Our fundamental resuit can be outlined as follows. Assume that the conditions

(A1)-(A4) for the convergence of the open-loop control problems are satisfied on

every finite time interval [t0, tl]. Suppose further that the stabilizability and the

detectability of the continuous time system are uniformly preserved by the sampled

time systems (see Definition 3.3-(iii) and 3.4-(iii)). Then the optimal controls fih

and the optimal state feedback laws Fh for the sampled time systems converge to

the optimal control fi and optimal feedback law F for the continuous time system,

respectively, as the length, h, of the sampling interval tends toward zero. We note

that the problem of uniform preservation of stabilizability and detectability under

sampling is in general, a difficult one. Here we shall treat this question only in a

limited sense. We shall have to assume finite rank feedback stabilizability and finite

rank detectability (see Condition iF)) for the continuous time system, although we

have some conjectures about other reasonably broad classes of systems for which these

conditions can be verified. We address this question in greater detail below.

As in the finite time horizon problems, the functionals Joo and Jh,oo can be viewed

as quadratic forms on L2(to, cc; U) and 12(ko, oo; U), respectively. However, since Joo

and Jh,oo are, in general, not bounded (for example, the uncontrolled system may

not be asymptotically sta.ble, hence the cost for the control input u -- 0 may be

infinity), one must deal with some rather tedious technical details. Therefore, the
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infinite horizon LQR problem is commonly viewed as the asymptotic limit of the

finite time horizon problems with the final time, tl, tending to infinity. The existence

and the uniqueness of the optimal controls and feedback laws can then be obtained

by considering the limiting behavior of the optimal controls and the optimal feedback

laws for the finite time horizon problems. From the definitions of the functionals Joo

and Jh,oo, it is natural to view the infinite time horizon problem as the limit of the

finite horizon problems wish the final state penalty operators G and Gh taken to be

zero. However, we note that if the optimal trajectories £(t) and _.h(k) are known to

be asymptotically stable (i.e., _:(t) --* 0, £h(k) --* 0, as t and k tend to infinity), then

the infinite horizon LQR problem can also be considered as the limit of finite horizon

problems with Gh, G > 0. Once again, for simplicity, we shall assume henceforth,

without lost of generality, that to = k0 = 0.

DEFINITION 3.1. (Cost functional stabilizability)

(i) The continuous time system associated with the operator pair (T, B} is said to

be cost functional stabilizable with respect to the performance index Joo given

by (3.1), if for each ¢ E H, there exists a constant M(¢) such that for any

s :> 0, there exists a control input u, E L2(s, co; U) with Joo(u_;s,¢) <_ M(¢).

(ii) The sampled time system associated with the operator pair (Th, Bh) is said to

be cost functional stabilizable with respect to the discrete performance index

Jh.oo given by (3.2), if for each ¢ E H, there exists a constant Mh(¢) such

that for any j > 0, there exists a control input sequence u_,i E 12(j, oo; U)

with Jh,oo(uh,j;j,¢) <_ Mh(¢).

(iii) The sampled systems are said to be uniformly cost functional stabilizable for

all 0 < h < h0, if.for each ¢ E H, the constants Mh(¢) defined in (ii) are

independent of the length of the sampling interval h, for all h <: h0 for some

h0>0.

For any given final time tf and final index kLh, let Ht_(-;G) and H_,h(.;Gu )

denote the Riccati operators given by (2.5) and (2.14) corresponding to the final state

penalty operators G and Gh, respectively. In the case G = Gh = O, using (2.7) and

(2.16), it is easy to verify that (see for example, [DI]) for each given t > 0 and k >_ 0,

the functions tf _ IIt_(t;0) and kf,h _ IIh,k_,h (k; 0) are nondecreasing, self-adjoint,

nonnegative operator valued functions. The assumed cost functional stabilizability of

the continuous and discrete time control systems then provides an upper bound for

Ht_ and Hh,kt, h. Indeed, we have

< II,i(t;0)¢, ¢ >/___ M(¢), ¢ E H,

and

< Hh,k,.h(k;0)¢,¢ >R_< Mh(¢), ¢ _ H,

for all tf and kf.a. Thus, the strong limits of Hts(t;0 ) and Hh.ks,h(k;0) exist for each

t :> 0 and k :> 0 as t I and kLh tend to infinity. Let us denote these strong limiting,
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operator valued functions by IIoo (.;0) and IIh,oo(.; 0), respectively. The existence and

uniqueness of the solutions to the continuous and discrete time optimal control prob-

lems is given in the following well known theorem; see, for example, [BW], [G], [GR],

[LCB], [HH], and [Z].

THEOREM 3.1. Assume that the continuous time system and the sampled time

systems for all h su_eiently small are cost functional stabilizable. Then for any s >_ 0

and j > O, and initial states x(s) = dp and xj,h = ¢, there exist unique optimal controls

ft, and fth which minimize the cost [unetionals Joo(.; s,x(s);O) over L2(s, oo;U) and

Jh.co(.;j, xn(j); O) over 12(j, c_; V), respectively. The optimal controls can be written

in linear state feedback form as

_(t) = -R(t)-XB(t)*IIoo(t;O)_(t) = -FCt)_(t),

and

ah(k) = -ka(k)-XBh(k)'nh,c (k + 1;O)Ah(k) h(k) =

where 5: and _h are the corresponding optimal trajectories and Rh(k) = Rh(k) +

hBh(k)'IIh,oo(k + "'O)Bh(k). The operator-valued function Hoo(.;O) is bounded on

the interval [0, oo) and satisfies the Riceati integral equation

(3.3) Hoo(s; 0)¢ = T(t,s)*IIoo(t;O)T(t,s)¢

+ -/' T(r, Hoo(r; O) (B R-1B*) (r) H_(r; O) ]T(r, s)¢dr,
J,

for all ¢ E H and (t,s) E A(2, oc). Similarly, the operator-valued sequence Hh,oo(';0)

is bounded for 0 < k < oo and satisfies the Riccati difference equation

(3.4) IIh._(k;0) = Ah(k)*IIh,oo(k + 1;0)Ah(k) + hQh(k)

-hAh(k)*IIh.oo(k + 1;O)Bh(k)Rh(k)-lBh(k)*IIh,oo(k + 1;0)Ah(k).

If the sampled time systems are uniformly cost functional stabilizable for 0 < h < ho,

then the operator-valued sequences IIh,,o(-; 0) are uniformly bounded for all sampling

period h with 0 < h < ho.

We assume that the general conditions (A1)-(A4) for the convergence of the

open loop problems hold on any given finite time interval. From the feedback form

of the optimal controls given in Theorem 3.1, it is not difficult to see that on a

given finite time interval [0, tf], the uniform convergence of the optimal controls fib,

the optimal trajectories 2h, and the optimal feedback gains Fh for the sampled time

control problems would follow directly from the uniform convergence of IIh,oo(.;0).

Our investigation is therefore, focused on the convergence of IIh.oo('; 0) to IIoo(.;0) as

h tends toward zero. Using the notation introduced in the previous section, we note

that for each t > 0, an obvious sufficient condition for the convergence of IIh,oo(t; 0)

to Hoo(t; 0) is the convergence of IItr(t; G) to Hoo (t; 0) and the uniform convergence
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in h of l=[h,k,,h(t; Gh) to l=[h,oo(t;0) (with kf,h --[tf/h]) as tf tends to infinity for some

G >_ 0 and corresponding Gh _> 0. Indeed, from the triangle inequality, for ¢ E H, we

have

llfIh,oo(t;0)¢- rIoo(t;0)¢41 ___ C )¢lIH

+lllZ[h,k/,.(t;Gh)¢- II,/(t; G)dPlIH+ lint/(t; G)¢- IIoo(t;0)¢]]..

Then for an arbitrary e > 0, a sufficiently large t! can be chosen such that the first

and the last terms on the right hand side of the above inequality are smaller than e/3

for all h. By applying the theory of the previous section on the interval [0, tl], there

exists h0 > 0 small enough'such that for all 0 < h < h0, the second term on the right

hand side of the above inequality is bounded by e/3. Thus, the desired convergence

immediately follows.

As we have pointed out, if the trajectories of the systems are asymptotically stable,

then as t! tends to infinity, the cost functionals Joo and Jh,oo are also limits of the cost

functionals J, Jh for the finite time interval problems on [0, tf] with final state penalties

G and Gn different from zero. In particular, if the optimal trajectory of the infinite

horizon problem is asymptotically stable, the convergence rates of .]h (fib; k, ¢, Ga) = <

Hh,_,,h(k;Gh)¢,¢ >H with Gh _> Mh(¢) and J(_;t,¢,G) =< II,_(t;G)¢,¢ >g with

G > M(¢) can be estimated by the decay rate of the optimal trajectory _ for the

infinite horizon problem. Toward this end, let S = {S(t, s) : 0 _< s < t < oo} be the

continuous time evolution system given by

fs t(3.5) S(t,s)¢= T(t,s)¢- T(t,r)B(r)F(r)S(r,s)¢ds, forCEH.

The evolution system S is also referred to as the perturbation of T by -BF. It

is not difficult to verify that S(t,0)¢ corresponds to the optimal trajectory for the

continuous time infinite horizon problem with initial state ¢ E H. Similarly, let the

discrete time evolution system Sh = {Sh(i,j) :0 < j < i < oo} be defined as

(3.6)Sh (i, j) = { I,__ i= j,1-I_=j{Ah(k)- hBh(k)Rh(k)-lBh(k)*IIh,_(k + 1;0)An(k)}, i > 3.

Thus, Sh(k, 0)¢ is the optimal trajectory for the discrete time infinite horizon problem

with initial state ¢ E H.

DEFINITION 3.2. (Exponential stability of the optimal feedback systems)

(i) The optimal continuous time feedback system (3.5) is said to be exponentially

stable, if there exist constants M and a > 0 such that for all 0 < s < t < co,

I]S(t,s))lL(, ) < Mexp{-a(t- s)}.

(ii) The discrete time optimal feedback system (3.6) is said to be exponentially

stable, if there exist constants Mh and ah > 0 such that, for all 0 < 3" _< i < oe,

[[Sh(i,j)I[L(H) <_ Mh exp(-ah(i- j)h}.
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(iii) The sampled time optimal feedback systems are said to be uniformly expo-

nentially stable for all 0 < h < h0, if the constants Mh and ah > 0 in (ii)

above are independent of h for 0 < h < h0.

The following result is an important property of the solutions of the l%iccati equa-

tions on the infinite time interval when the optimal feedback systems are exponentially

stable. The proof can be found in [BW], [DI], [G] for the continuous time problem,

and in [GR] (Theorem 2.9) for the discrete time problem.

LEMMA 3.1. Assume that the continuous time control system and the sampled

time control system with sampling period h are cost functional stabilizable. If the

corresponding optimal feedback systems are exponentially stable, then IIoo(.;0), and

IIh,oo(';0 ) are the unique bounded solutions of the corresponding Riccati equations

(3.3) and (3.4) on the infinite time interval. Furthermore, if G and Gh are chosen

such that G > IIoo(t;0) and Gh > IIh,_(k;0) for all t and k, then the solutions of the

Riccati equations on the finite time interval, IIt_(t; G) and Hh,kf, h(k; Gn), satisfy

<H,,(t;G)¢-H_(t;0)¢,¢>n < <GS(tl,t)¢,S(tI,t)¢>n,

and

< IIh,k,.h(k;Gh)¢- Hh,_(k;Gh)¢,¢ >x <_

respectively, for all t < t f, k < kf, h, and ¢ E H.

<

LEMMA 3.2. Assume that the sampled systems are uniformly cost functional

stabilizable with the optimal feedback systems uniformly exponentially stable for 0 <

h < ho. Then, the operators G and Gh can be chosen as described in Lemma 3.1 with

Gh < C • I for some constant C independent of h. As t! tends to infinity, Htf('_ G)

converges to II_(.;0) uniformly on any bounded subinterval [a,b] of [0, oo) and the

convergence of I_Ih,_I,h(.;G_,) with ki, h = [tI/h ] to I_lh,¢_(.;0) is uniform in h for all

0 < h < ho on any bounded subinterval [a, b] of [0, _) in the uniform operator norm.

Proof. We prove only the discrete time assertion. The continuous time case

is completely analogous, if not simpler. The assumption of uniform cost functional

stabilizability implies that'the operators Gh can be chosen as stated in the theorem.

Then let M and a be the constants in Definition 3.2-(iii). For a given e > 0 and

t E [a, b], we can take tf large enough such that CM 2 exp{-2a(tf - t - h0)} _< e. Let

kh = [t/h}, then (kf, h -- kh)h > tf - t - ho for all 0 < h < h0. Since IIh,kf.h(kh;Gh) >

lqh,_(kh; 0), we have

IlI]a,_,,_(t;Gh) - fln,_(t;O) llL(H) = IlIIh,,,._(kh;Gh) -- IIn,_(kh;0)llL(n )

= sup < >.
II_ll,_<x

<_ sup <
ll_lln<l

< CM2e -2a(kz,h-kh)h < e.
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[]

As a consequenceof the above lemma, we obtain our first convergence result.

THEOREM 3.2. Let Conditions (A1)-(A4) for the operator families {Th, Bh, Qh,Rh}

hold on any finite subinterval of [0, oo). Assume further that the continuous time sys-

tem and the sampled time systems with 0 < h < ho are uniformly cost functional

stabilizable, and that the optimal closed-loop evolution systems are uniformly expo-

nentially stable. Then, the Riccati operators IIh,c_(t; 0) converge strongly to 1-Io,,(t; O)

and the convergence is uniform on any bounded subinterval of [0, oo).

Proof. Let ¢ E H and let [a,b] be a bounded subinterval of [0, oo). We choose

an operator G such that G _> IIoo(t;0) and G > Hh.oo(k;0) for all t E [0, c_) c R,

k C [0, c_) C Z and 0 < h < h0. By Lemma 3.2, t! can be taken large enough such

that for all kf.h = [tf/h], we have

Ill-[,,(t;c)¢-1-[_(t;0)¢llH _<_ and 1115:h,k,,_(t;G)4,- fih,_(t;0)¢llH _ _,

for all t E [a, b] and all 0 < h <_ h0. By Theorem 2.4 of Section 2, we can find h small

enough such that

E

IEl'th,k,,,(t; G)¢ - IIt,(t; C)¢IIH _,

for all t E [a, b]. Therefore, we have

[Ifl:h,oo(t;o)¢ - IIoo(t;0)¢llH < Ilfl:h,oo(t;O)¢ -- fln,_s,_(t;a)CltH

+llfIh,k,,_(t; G)¢- rtt_(t; G)ClIH + IlII,_(t; G)¢- II_(t;o)CllH _<e,

for all t E [a, b]. O

We note that although the exponential stability of the optimal feedback systems is

only a sufficient condition for the uniqueness of the solutions to the Riccati equations,

it also implies the stability of the solutions to the Riccati equations under small

perturbations (see [BW], [DI]) which is important in the context of approximation.

Consequently the remainder of our discussions here are concerned with conditions

which guarantee the exponential stability and uniform exponential stability of the

optimal feedback systems.

A useful characterization of exponentially stable evolution systems is given in a

result due to Datko in the continuous time case (see [D]) and Zabczyk in the discrete

time case (see [Z]). We state it here in both its continuous and discrete time forms as
a lemma.

LEMMA 3.3.

(i) Let T be a strongly continuous evolution system. If there exists constants

C1, C2, and w > 0 such that

//IIT(t,s)[IL(HI <_ C1 ew(t-'), and llT(t,s)Cll_dt <_c_llCll_,
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for all ¢ E H and 0 < s < t < co, then, we can find constants M and _ > O,

depending only on Cl,C2, andw, such that liT(t, s)ll£1x)<_Mexp{-a(t-s) },

for all 0 < s < t < c_.

(ii} Let Th be the discrete time evolution system defined by

-{Th(i,j) I,,__ i = j,
ll_=j A_(k), i > j.

If there exist constants Ct,h,t_h and C2,h such that

oo

IlTh(i,j)llL(_) < Cx,he_h('-i)n, and h _ IlTh(i,k)¢ll_ <_C_,hllCtl_,,
i=k

for all 0 < k < c_ and ¢ E H, then, we can find constants Mh and ah > O,

depending only on Cl,h, wh and C2,h, such that for all 0 <_ j <_ i < oo

tlTn(i,j)IIL(H) < Mhe -_h('-i)h.

The converse of this lemma is obviously true. By the uniform cost functional

stabilizability, the solutions of the Riccati equations (3.3) and (3.4), IIoo and Hh,oo are

uniformly bounded, and therefore, the evolution systems S and Sh given by (3.5) and

(3.6), respectively, are uniformly exponentially bounded if T and Th are uniformly

exponentially bounded. Moreover, we have

f_ IIQ(t)l/_S(t,s)Cll_dt <_MII¢It_

and
oo

h _ IlQh(k)x/2Sh(k,j)¢ll_ <_M[IC{I_,
k=./

for some constant M and for all ¢ E H. If the operators Q(t) and Qh(k) are uniformly

strictly coercive (i.e., there exists a constant q > 0, such that Q(t) >_ qI and Qh(k) >_

qI, for t > 0 and k > 0), we can immediately conclude that S and Sh are uniformly

exponentially stable.

A more general case irt which the boundedness of the cost functional implies the

stability of the feedback system, is the case of detectable systems.

DEFINITION 3.3. (Detectability)

(i) A continuous time control system is said to be detectable with respect to

the cost functional (3.1), if there exists a bounded operator-valued function

V(-) : [0, oo) _ L(H) such that the evolution system Tv, corresponding to

the perturbation of T byVQ1/2(.), is exponentially stable.

(ii) A sampled time control system is said to be detectable with respect to the cost

functional (3.2), if there exists a bounded sequence of operators {Vh(k) }L0 C

L(H) such that the discrete time evolution system Tv, h given by

= ] I, i = j,
Tv, h(i,j) i-1

l-L,=y(Ah(k) + hVh(k)Qh(k)X/2), i > j,

is exponentially stable.

22



(iii) The sampled time systems are said to be uniformly detectable for 0 < h < h0,

if there exist constants C1, C2, and a > 0, independent of h such that the

operator-valued sequences {Vh(k)}_= o in (ii) satisfy IlVh(k)llL(n) <<_Cx and

IlTv,h(i,j)ilL(n ) < C2e -_('-i}h, 0 < j < i < c_,

for all sampling rates 0 < h < h0.

Under appropriate conditions, the detectability of the control systems implies the

stability of the optimal feedback systems. Indeed, toward this end, we require the

following boundedness assumption.

(B) The continuous time evolution system T and the discrete time evolution system

Th are uniformly exponentially bounded on A(2, oo). That is, there exist

constants M and w such that

IIT(t,s)IIL(H ) <_ Me_(t-'), IITh(i,j)IIL(H) < Me_('-s) h,

for 0 < s < t < ov and 0 < j <: i < oo. The operator families B,Q, and

R and the piecewise constant operator families/3h, Qh, and/_h are uniformly

bounded in norm by a given constant C on the entire interval [0, ¢x_) for all

sampling rates h > 0. Furthermore, there exists a constant r > 0 such that

R(t) > rI and f_h(t) > rI for all t > 0, and h > 0.

THEOREM 3.3. Consider a detectable continuous time control system and a

detectable sampled time system which are both cost functional stabilizable. Assume

that the evolution systems T, Th are exponentially bounded, and the operator families

{B,Q,R} and {Bh, Qh, Rh} are bounded in norm on the infinite time interval. Then,

the optimal feedback systems for both systems are exponentially stable. Furthermore,

suppose that constants C,w,r > O, and a > 0 can be found such that the following

conditions are satisfied.

(i} The operator families {B,Q,R, Hoo(.;O), V} and {Bh, Qh,Rh, IIh.oo(';O), Vh}

are bounded in norm by C;

5i} For all t > O,k >_ O, R(t) >__rI and Rh > rI;

(iii) The evolution systems T, Th, Tv, and Tv.h satisfy

IIT(t,s)NL(,-,)S Ce'('-'l, IIT,'(t,s)ll,,(H)< Ce-"('-'),

and

IITh(i,j)HL(H) <_CeW('-Y}̂ , IITv(i,j)IIL(H) <_ h.

Then there exists constants M and/3 > 0 depending only on the constants C, r, a and

w such that

IIS(t,s)IIL(H) <_ Me-e(t-'), IlSa(i,j)llL(_) <_ Me-e('-i) h.
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Moreover, under Assumption (t3}, if the sampled systems are uniformly detectable and

uniformly cost functional stabilizable for 0 < h < ho, theri, the optimal closed-loop

systems are uniformly ezponentialIy stable for 0 < h < ho.

Proof. In the case of continuous time system, a proof is given by Da Prato and

Ichikawa in [DI]. The dependence of l_he exponential bound for the optimal closed-

loop system on the constants indicated above is proved in [W]. The arguments for the

discrete time case are very similar to those used in the continuous time case. Indeed,

let Sh correspond to the perturbation of Tv, h by Ah = {Ah(k) = -Bh(k)Fh(k) +

Vh(k)Qh(k) I/2} in the sense that

[t,/hi fv.h(t,,) £h(,)Dh(,, _)¢a,.Dh(t,s)¢ = :Fv,h(t, s)¢ + Jt,/hl

Let us define

fh(k,i) = -Rh(k)l/_Fh(k)¢, and gh(k,i) = Qh(k)x/2Sh(k,i)¢,

for k > i > 0. Then cost functional stabilizability implies thai

IIA(.,i)ll,,(,._;u)_<cI1¢11_, Ilgh(.,i)ll,,(,._;_)<_c11¢11_.

The evolution system Tv.h is bounded; IIT_,h(i,3)IIL(H)_<c exp{-a(i-j)h}. Thus we
obtain

II,_h(t,s)¢tlH _< lit�hi
Ce-_(t-') + Jl,/hl Ce-_(t-')(]l[3h(r)kh(r)-X/2llL(v'H)ll]h(r's)llu

+ IIf',,(_-)IIL¢,-,)II#h(_-,s)t1,,)d_-,

and by Young's inequality (see, [A, Theorem 4.30, p.90]), we have

Z °o Ilsh(t, s)¢ll_dt _<KI1¢11_,¢ e H,

for some constant K. Applying Lemma 3.3, we obtain the exponential stability of

Sh. The dependence of the exponential bound for Sh on the indicated constants of

course follows from the dependence of the constant K on the indicated constants as

prescribed in the lemma. In this way it is easy to see how under Assumption (B), uni-

form detectability and cost function stabilizability will imply the uniform exponential

stability of the closed-loop systems. []

Another closely related control theoretic concept is the stabilizability.

DEFINITION 3.4. (Stabilizability)

(i) A continuous time system is said to be stabilizable, if there exists a bounded

operator-valued function g(.) : [t0, oo) _-, L(H,U) such that the evolution

system TK corresponding to the perturbation of T by BK is exponentially
stable.
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(ii) A sampled system is said to be stabilizable, if there exists a bounded sequence

of operators {gh (k) }_¢=0 C L(H, U) such that the discrete evolution operator

TK.h given by

TK,h(i,j) -- { I,,_1 i= j,I-[k=i(Ah(k) + hBh(k)Kh(k)), i > j,

is exponentially stable.

(iii) The sampled time systems for are said to be uniformly stabilizable for 0 <

h < h0 if there exist constants C1, C2, a > 0 independent of the sampling

period h, such that Kh and Tg,h satisfy

l]Kh(k)]l£(/_,tr) <_ C1, I]TK,h(i,j)]IL(.) <_C:e -¢'('-j)h,

for all 0 _ k < _, 0 __j _ i < oo.

Using Theorem 3.3 it is easy to verify that cost functional stabilizability and de-

tectability imply stabilizability (take K = F, Kh = Fh, for example). Conversely,

stabilizability clearly implies cost functional stabilizability. Therefore, under the uni-

form detectability assumption, cost functional stabilizability and stabilizability are

equivalent. In general, uniform stabilizability and uniform detectability are required

for the convergence of IIh,oo to 1-Io_ as h tends toward zero.

THEOREM 3.4. Let Assumption (B) hold. Suppose further that Conditions

(A1)-(A4) hold on any bounded subinterval of [0, c_). [f the continuous time system

and the sampled time systems are uniformly stabilizable and uniformly detectable,

then, the unique solution IIh,oo of the infinite horizon Riccati difference equation (3.4)

converges to the solution H_ of the infinite horizon Riccati integral equation (3.3) as

h tends toward zero. The convergence is uniform in time on any bounded subinterval

o/[0, ¢¢).

Proof. By Theorem 3.3, uniform stabilizability and uniform detectability imply

exponential stability of the optimal feedback systems (i.e., Definition 3.2), uniformly

over all sampled systems with 0 < h < h0. Therefore, by Theorem 3.2, we obtain the

desired convergence. []

Most control systems of interest in engineering practice are stabilizable and de-

tectable. In fact, in modeling many control systems of practical interest, a realis-

tic description of the physical system frequently necessitates stabilizability and de-

tectability of the system model (see, for example, [BKS], [BKSW]). Investigation of

stabilizability and detectability of particular classes of evolution systems has gener-

ated several interesting mathematical problems (see, for example, [C], [L]). However,

in the context of approximation, we usually assume that the original control system

is stabilizable and detectable. An important issue here is whether or not a given

time discretization algorithm is capable of preserving, uniformly, these properties,

and therefore provide discrete time convergent approximations for the optimal feed-

back operators. In the remainder of this section, we attempt to address this issue for
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some particular discretization algorithms and indicate some other possible approaches

to this problem.

Assume that the control system defined in Equation (2.1) is stabilizable and de-

tectable with respect to the cost functional (3.1). Thus, there exist bounded operator-

valued functions K(-) : [t0,oe) _-* L(H;U) and V(.): [t0, c_) _ L(H) such that the

evolution systems TK, Tv, corresponding to the perturbations of T by BK and VQ 1/2,

respectively, are exponentially stable. That is, there exist constants M, a > 0 such

that [[TK(t,8)I[L(H) <_ Mexp{-a(t- s)} and []Tv(t,s)]]L(H) <_ Mexp{-a(t- s)}, for

all 0 < s < t < _. By definition, the evolution operators Tg, and Tv satisfy

(3.7) TK(t,_)¢ = T(t,_)¢ + f(t,,7)S(,7)g(,7)TK(,7,_)¢d,7,

(3.8) Tv(t,s)e = T(t,s)¢+£T(t,,7)Y(n)Q1/'(n)Tv(n,_)¢d,7,

for all ¢ E H and for all 0 ___s _< t < c¢. Consider the zero-order hold discretization

described in the Section 2. For each k ___0, the operators Ah(k), Bh(k) are defined by

(3.9) Ah(k) = T((k+ 1)h, kh),
1

f(k+l)hT((k + 1)h,_)B(rlld_?,(3.1o) Bh(k) = -_J_.

with the discrete evolution systems Tg, h, Tv, h then given by

f I, i = j,(3.11) TK,h(i,j)
'-' hBh(k)K(kh)}, i > j,l-I_=i{Ah(k) +

= f x, i= j,(3.12) Tv.h(i,j)
,-1 hV(kh)Qh(k)l/2}, i > j.1-I_=i{Ah(k) +

If the discrete time evolution systems TK,h, Tv, n are uniformly exponentially stable for

all 0 < h < h0 for some h0 > 0, then, these sampled time systems are uniformly

stabilizable and uniformly detectable. Using (3.7) and (3.8), the evolution systems

TK, and Tv satisfy

Tg(ih,jh) = T((k + 1)h, kh) +
k=i ./kh

and

i-1 [
Tv(ih,jh) = 1] T((k + 1)h, kh) + f_(k+l)h

k=j J kh

T((k + 1)h, rl)B(rl)K(rt)TK(rl,kh)drl] ,

T((k + 1)h, rl)V(rl)Q(rl)l/2Tv(_,kh)dr]] ,

for 0 _< j <_ i < co. Therefore, TK,h, and Tv.h can be considered as perturbations of

TK and Tv, respectively. In fact, we have

(3.13) TK,,,(i,j) =

(3.14) Tv, h(i,j) =

i-1

1-I {Tg((k + 1)h, kh) + hCp,(k)},
k=j

i-1

H{Tv((k + 1)h, kh)+ h_h(k)},
k=j
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forO_<j <i< oo, where

1 (f(k+l)h T((k + 1)h, rl)B(rl)[K(kh) - K(rl)Tv(rl,kh)]drl) ,

and

i[(_+_)"q_h(k) = V.kh.Qh k'/2(1 ( ) -
Jkh

T((k + 1)h, rl)V(rl)Q(rl)l/2Tv(rh kh)drl)

for k > 0. Let 0 < w < a and define Tg.h(i,J) = exp{w(i- j)h)}Tg,h(i,j), 0 <_ j <_

i < oo and 7"K(t,s) = exp{w(t- s)}Tg(t,s), 0 < s < t < oo. We define Tv and ]'v,h

analogously. It is not difficult to verify that

II]'K(t,s)IIL(H) <_ M, II]'V(t,s)IIL(H) <_ M.

Multiplying both sides of (3.13) and (3.14) by exp{w(i- j)h)}, and rewriting these

equations in a variation of constants form, we obtain

i-1

= _K(ih,jh) + h E _K(ih,(k _ 1)h)e_a_(k)_,_(k,J),
k=y

i-1

= _v(ih,jh)+hE/',,(ih,(_;+ llhle_"_,,(kl/_v._(k,J).
t:=o'

If there exists a constant h0 > 0such that for all h < ho, exp{wh}ll@h(k)[IL(H) < _o/2M

and exp{wh}llqdh(k)ltL(H) < w/2M, then,

i-1

II_K,_(i,J)IILI.)_ M + h
k=y

i-1

I!Tv, h(i,j) IIL(H) <_ M + h __,
k=y

M " -_--_ IITK,h( k, j) IIL(H),

0,,) ^

M " "_-_ llTv.h (k, .?) llc( H) .

The discrete Gronwall inequality then yields

NtK,h(i,J)IIL(') --< Md '-j)_/',
IITv,h(i,j) IIL(H)<_ Me_'('-Y)h/2.

Therefore, TK,h, and Tv, h are uniformly exponentially stable for all 0 < h < h0.

It is not difficult to see that for each k > 0, @h(k) and @h(k) converge strongly

to zero as h tends toward zero. We can obtain convergence in norm if the rank of the

operator valued functions _Oh(k) and q2h(k) is finite.

DEFINITION 3.5. (Finite rank operator-valued function) Let X and Y be Hilbert

spaces with inner products < .,. >x and < -,. >g, respectively. An operator-valued

function W(.): [0, oo) _-_ L(X,Y) is said to be continuous and to have finite rank, if
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there exist continuous vector-valued functions f_(.): [0, oe) _ X and gk('): [0, c_) _-_

Y, k = 1,...,n with n < co, such that for all x E X,

n

wct)_ = _, < :_(t),_ >_ g_(t).
k=l-

We define the following condition.

(:F) (Finite Rank Stabilizability and Detectability Condition) There exist finite rank

continuous operator-valued functions g(.), V(.) such that the perturbed evo-

lution systems TK and Tv are exponentially stable.

LEMMA 3.4. Suppose that Conditions (A1)-(A4) hold. If the finite rank con-

dition (F).is satisfied, then on any finite subinterval of [0, oo), the operator-valued

functions _h, and _h constructed from _h and _h in the usual manner, converge

uniformly to zero in the uniform operator norm as h tends toward zero.

Proof. We consider _h only, the argument for _h is analogous. Using the finite

rank condition, we write

v(t)¢ = C </,(t), ¢ >. g,(t),
k=l

with fk and gk continuous for k = 1,..-,n. It follows that

n

V(ih)qh(i)l/2¢ = _ < qn(i)a/2h(ih),¢ >H 9k(ih),
k=l

for i __ O, and

rt

T(t, rt)V(rl)q(rl)t/2Tv(rl, S)¢ = _ < Tv(_?,s)*Q(rl)X/2fk(rl),¢ >. T(t, rl)gk(rl),
k=l

for 0 < s < rl < t < c_. Therefore, we have

= V([t/h]h)(2n(t)U2¢

1/([,m+.,)n
-h _tt/hih T(([t/h] + 1)h,,)Y(,)Q(,)XnTv(,,[t/h]h)¢d,

= £ L fC[t/h]+1)h {< C2"(t)t/'fk([t/h] h) ¢ >H gk([t/h]h)
h .t[t/hlh

k=l

- < Tv(rl,[t/h]h)'QCrl)l/2fk(rl),¢ >. T(([t/h] + 1)h, r/)g_:(r/)} dr/.

By adding and subtracting the term < Tv(1?,[t/h]h)*q(_?)l/2fk(_?),¢ >H g_([t/h]h)

under each of the above integral signs, and using the Schwartz inequality, we obtain
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the following estimate

II_hCt)¢ll. 1 _/CI'/hl+i)h
< -h _i,lh]h {wh(t,_)llg([tlhlh)ll_s

k=l

+,_h(t,,DIITv(,7,[tlhlh)'Q(,D_i_h(,7)ll.} II¢ll-d_

= h -'I<i,,l,, uh(t,,DIl¢llhd,7
k=!

where

,,,,,(t,,D
v,,Ct,,7)
u,,(t,,D

= 11(2h(t)_12f_([tlhih)- Tv(r#,[tlhih)'Q(n)xl2y_(n)llH,

= llg([tlh]h)- T(([tlh] + 1)h,_)g(n)llx, and

= wh(t,o)llg([t/h]h)NH + vh(t, rl)llTv(r#,[t/h]h)'Q(rl)l/'h(rl)liH.

Since the functions fk and gk are continuous on any bounded subinterval [a, b] of [0, oo),

and for any e > 0, there exists li > 0 such that Nh(t) - fk(s)llH < e and IIg_(t) -

g_(s)llH < efor all t,s e [a,b] with It-sl <_ 6 and k = 1,..-,n. Then, the boundedness

of the operator families T, Tv, V, Qh, Q and the uniform strong convergence of Qh to

Q implies that for any bounded subinterval [a, b] of [0, ¢x_), and for any given constant

e > 0, we can find h0 > 0 such that for all 0 < h < h0 and t E [a,b], the functions

uh(t,r#) g e for r# e [t,t + h] and t E [a,b]. Consequently II_ilh(t) NL(H} __ e for all

t _ [a,b]. []
We can extend the uniform convergence on finite time intervals to uniform conver-

gence on the infinite time ia'tterval by assuming certain periodicity (in particular time

invariance) of the evolution system T and the operator-valued functions B, Q, Qh, K

and V. In fact, the periodicity assumption implies that _h,_h are also periodic

functions of time.

THEOREM 3.5. Assume that the evolution system T and the operator-valued

functions B, Q, R are strongly continuous and periodic with the same period, 0. Sup-

pose further that the periodicity of Q is preserved by O,h for the sampled time systems.

If the finite rank condition (F) holds for some O-periodic functions K and V, then

the discretization defined in (3.9) and (3.10) generates uniformly stabilizable and uni-

formly detectable sampled control systems for sampling periods h with 0 < h < ho for

some constant ho > O.

The periodicity assumption is trivially satisfied in a large number of practical ex-

amples, in particular, it is satisfied for all time invariant systems. However, the finite

rank assumption says, in essence, that only a finite number of modes of the state

vector are unstable in the absence of control. Indeed, in the case of evolution systems

corresponding to a hyperbolic partial differential equation, there exists examples in

which if the finite rank condition is not satisfied, all sampled systems are not stabi-

lizable even though the cofitinuous time control system is stabilizable. For parabolic,

compact, evolution systems, the spectral properties of the evolution system provide

29



valuable additional structure. In this case, an approach which does not require the

finite rank condition, similar to the one used in IR], can be applied. The results using

this type of argument will be reported on elsewhere. However, even in the case of

parabolic, compact, evolution systems, since the unstable spectrum consists of only

a finite number of isolated points, it would be interesting to know whether these sys-

tems can be stabilized via finite rank feedback. If the answer is affirmative, then the

arguments presented here may not be as restrictive as they seem. For other discretiza-

tion schemes, the uniform stabilizability and uniform detectability of the generated

sampled systems remains, in most cases, an open question.

4. Examples and Numerical Results. In this section we present and briefly

discuss some of our numerical findings which serve to illustrate our convergence results

in the context of a variety of distributed parameter control systems. In particular,

we consider the infinite horizon optimal control or regulation of a heat or diffusion

equation, a delay or hereditary system, and a flexible structure in the form of a

cantilevered Voigt-Kelvin viscoelastic beam with tip mass.

In all of the examples to follow, we consider time invariant systems only, and

obtain the discrete or sampled time operators from the corresponding continuous

time operators via Th =-- TIh), B_, -- h-l fohT(t)Bdt, Qh -- Q, and Rh -- R, for

h > 0 (i.e., via zero-order hold sampling). In order to solve the resulting infinite

dimensional continuous and discrete time LQR problems, we introduced some form

of state discretization (i.e. either modal or spline based Ritz-Galerkin techniques)

which were known to yield convergence in the closed-loop problem. By choosing the

state discretization sufficiently fine, we could assume that we obtained a reasonably

accurate finite dimensional approximation to the solution of the infinite dimensional

LQR problems.

The resulting finite dimensional continuous and discrete time LQR problems

(more precisely, the matrix algebraic Riccati equations) were solved using either eigen-

vector (in the continuous time case, also known as Potter's method, see [KS]) or Schur

vector (for the discrete time problems, see [PLS]) decomposition of the Hamiltonian

matrix. All computations for the first two examples were carried out on an IBM PC

AT. The flexible structure problem was solved on an IBM3090, although it too could

have been solved on a personal computer.

In each of the examples below, the control systems are time invariant and the

control space U is finite dimensional. In fact, U = R. Thus, the optimal feedback

gains, F and Fh, are elements in L(H, R). That is, they are bounded linear functionals

on H. Consequently, they admit representors, respectively f and fh, in H with F_o -'<

f,_o >n and Fh_o =< f_,_o >H, for _o C H. The elements f and fh in H are referred

to as the optimal continuous or discrete time functional feedback control gains. The

finite dimensionality of the control space U also implies the uniform stabilizability

of the sampled systems when the continuous time systems are stabilizable (recall

Theorem 3.5). Our convergence result implies that limu--.0+ Fh_o ---- F_o for _o E H.

Note that when U is finite dimensional, this is equivalent to limh-_0+ Fh = F in

the uniform norm topology on L(H, U) and limh--.o+ fh = fin H. It is this latter
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convergenceof the functional gains which we shall exhibit in our plots below.
Example 4.1. We consider the scalar or one dimensional heat or diffusion control

system

0 2
0 x(t,r/) ----a x(t,r/) + bx[_,_](rl)u(t), 0 < rl < 1 t > O,o5

with the Dirichlet boundary conditions

x(t,0) =x(t,1)=0, t >0,

at rt = 0 and rt = 1 where a > 0, b E R, 0 <_ el < e2 _< 1, and X, denotes the

characteristic function on the set S. We take the performance index to be

j(,,)= fo=<fo'q=(t,.)'d,+

withq_>0andr>0.

In this case we have g = L2(0, 1), V = R, A: Dora(A) C H _-* H given by

A_o = aD2_o for _ • Dom(A)= H2(0, 1) A H_(0, 1),

B • L(R,H) given by (Bv)(rl) = bx[_,,_2](rl)v, 0 < 7? < 1, v • R, Q • L(H) given

by Q = qI, and R • L(U) given by R = rI, where I denotes the identity map on

R. We note that {T(t) : t >_ 0}, the semigroup of bounded linear operators on H

with infinitesimal generator A, is parabolic and uniformly exponentially stable. Thus

the continuous time pairs, {A, B} and {Q, A} are trivially stabilizable and detectable

and the discrete time pairs, {Th,Bh} and {Qh, Th} are uniformly stabilizable and

detectable as well.

Setting a = 0.1, b = 1.0, q = 1.0, r = 1.0, el = 0.21, and e2 = 0.275, we

obtained the plot of the functional gains f and fh in L2(0, 1), for various values of

h > 0, given in Figures 4.1 and 4.2. Those in Figure 4.1 were obtained via a modal

(i.e. sin(krx),k = 1,2,...,N) state discretization with N = 20 modal elements.

For the gains in Figure 4.2, we used linear B-spline elements (i.e. "hat" functions)

defined with respect to a uniform partition of [0, 1] into N = 20 subintervals of equal

length. Convergence of these state approximations and the corresponding closed-loop

solutions to the control problem is well known (see, for example, [G], [GR]).

Example 4.2. In this example, we consider the scalar, single input hereditary control

system

(4.1) _(t) = aox(t) + alx(t - 1) + bu(t)

where a0, hi, b • R. We take the performance index to be

f0 °¢
J(u) = {qx2(t) + ru2(t)}dt

withq>0andr >0.
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FIG. 4.1. Functional gains/or heat equation with modal approximation

0.06

e__h=-- Co ntl ..... time, h-lO -&

10 -3

..... h. lO-2

o o.,

FIG. 4.2. Functional gains/or heat equatwn with spline approximation

o _:

--Continuous time, h=10 -4

h. lO -3

h= 10 -2
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TABLE 1

Head gains for hereditary system.

Sampling period h Head gain fo

10-1

10-2

10-3

10-4

lO-S

10-6

Continuous time

3.76185

4.35007

4.41577

4.42241

4.42308

4.42314

4.42315

The abstract Hilbert space formulation for linear hereditary control systems is

well known (see, for example, [BB]). We let H --- R × L_(-1,0),U -- R and set

A: Dom(A) C H _ H to be A(t/,_) = (a0rl + al_o(-1),D_) for (r},_o) E Dom(A) =

{(f, ¢) E H: ¢ E HI(-1,0), _ = ¢(0)}. The operator A is the infinitesimal generator

of the C0-semigroup of bounded linear operators on H, {T(t) : t _> 0}, given by

T(t)(t},_o) = (x(t),x_) where x is the solution to (4.1) with u - 0 and corresponding

to the initial data x(0) - r/, x(8) = _(0), -1 < _ < 0, and x, E L2(-1,0) is the

past history of x from t back to t - 1. That is xt(0) = x(t + 8), -1 < 0 <_ 0. We let

B E L(R,H) Q E L(H), and R E L(U) be given by By = (by,O), Q(rt,w) = (qr/,o),

and Rv = rv, respectively.

To solve both the continuous and discrete time LQR problems we employed a

piecewise constant/linear spline hybrid finite element scheme developed by Ito and

Kappel in [IK]. Setting a0 = al = b = q -- r = 1, and with a state discretization

level in the Ito-Kappel scheme taken to be N = 20, we obtained the R × L2(-1,0)

functional gains, f = (f0, f,) and h -- (fo, f_) for various values of h > 0, tabulated

and plotted in Table 1 and Figure 4.3 below. We note that for this choice of the

parameters a0 and al, the open loop system has an eigenvalue with positive real part.

Consequently the system (4.1) is open-loop unstable. It is not difficult to argue that

the pairs {A,B} and {Q,A} are respectively stabilizable and detectable. Also, since

the operators B and Q are of finite rank, there exists ho > 0 such that for all sampling

periods h < h0, the sampled control systems are uniformly stabilizable and detectable

in h.

Example 4.3. We conside.r the control of the small amplitude transverse vibration of

a cantilevered Voigt-Kelvin viscoelastic beam with tip-mass. The relevant dynamics

are described by the hybrid system of ordinary and partial differential equations

02 c_s _4

p-_z( t, rl) + cI o-_-_40tx(t, _ ) + EI-_4 x(t, r/) = 0, r/C (0, 1),
02 _04 _3

rn_-_z(t, 1) -cI g-_z(t,1) - EI_x(t, 1) = bu(t),
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FIG. 4.3. Fu_ctio,_al gains for delay _quatwa. (a} h=O.l, (b) h=O.01, (c} h--O.O01, (d) h--O. O001,

(e) Contiauous time.
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for t > 0, the essential (or stable) boundary conditions at r/= 0

=(t,o)= o, = o, t > o,

and the natural (or unstable) boundary condition at r/= 1,

03 a:

cI_x(t,l)- EI-_2x(t,1 ) =0, t > O.

In the above equations p > 0 is the linear mass density of the beam, I > 0 is the

beam's cross sectional moment of inertia, e > 0 is the viscosity coefficient, E > 0 is

Young's modulus, m > 0 is the mass of the tip mass, and b E R is a constant.

We take an energy based performance index:

J(u) /oOO{i , a: {m(a=(t, 1)):_EI fo (-_2x(t,rl)) :drl +

11 cqxt }+ f0 2P(N ( ,_))=d, + ru(t) = dt.

Once again the abstract Hilbert space formulation of this problem is standard. We

let H = H_(0, 1) × R × L2(0, 1) where HL2(0,1) = {_ • H2(0, 1): _(0) = D_(0) = 0},

and endow H with the energy inner product

< >. _01
EI D2_lD=_2

/oI+mr/jr/= + # _bi_b2.

The operator A : Dom(A) C H _-* H is given by A(_,r/,_) = (¢,cID3_2(1) +

EID3_(1),-cID4_b- EIb4_) for (_,r/,_b) • Dom(A) = {(_,r/,@) • H : _b •

H_(0,1),r/ = _b(1),cID2¢+EID:_ • H2(O, 1),cID2¢(1)+EID:_(1) = 0}. We take

U = R and define B • L(R,H) by By = (O, bv, O). We let Q • L(H) and R • L(U)

be given by Q = (1/2)IH and R =rIv, where I/_, and Iu denote, respectively, the

identity operators on H and U.

It can be shown (see [GA]) that A is the infinitesimal generator of a uniformly ex-

ponentially stable analytic semigroup. Thus once again stabilizability and detectabil-

ity for the continuous time problems trivially follows as does the uniform stabilizability

and detectability for the discrete time problems.

We employed a standard cubic spline based Ritz-Galerkin finite element scheme to

approximate or finite dimensionalize the continuous and discrete time LQR problems

(see [GA], [GR]). Setting p = O.1,EI = 1.3333 x 10-4,ci = 1.3333 x 10-7,rn = 1,b =

1, q = 1, and r = 1 and with N = 9 cubic spline elements, we obtained the functional

gains f (f0, fl, f2) fh 0 1= , = (fh, fh, f_) • H exhibited in Table 2 and Figure 4.4 below.
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TABLE 2

Tip gains for beam equation•

Sampling period h Tip Gain, _-

1.000

0.500

0.010

0.005

0.001

Continuous time

0.12181

0.12003

0.11798

0.11796

0.11794

0.11793

FIG. 4.4. Functional gains for beam equation. (a) Displacement, we plot D2 f _1 to ezh_bit the H 2

convergence; (b) Velocity.
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5. Summary and Concluding Remarks. We have investigated and estab-

lished the convergence of solutions to discrete or sampled time linear quadratic regu-

lator problems and the associated Riccati equations for infinite dimensional systems

to the solutions to the corresponding continuous time problem and associated Riccati

equation, as the length of the sampling interval tends toward zero. We have con-

sidered both the finite and infinite time horizon problems and carried out numerical

studies involving a variety of distributed parameter control systems in order to ob-

serve how well our theoretical results predict what actually takes place in practice. In

the context of the finite time horizon problem, the assumption of strong continuity on

the operators which define the control system and performance index, together with a

stability and consistency hypothesis on the sampling scheme, are sufficient to establish

the strong convergence of the Riccati operators, feedback gains, optimal control laws,

and optimal trajectories, with some degree of uniformity in time over the compact

interval of interest. For the infinite time horizon problem, we require the additional

assumption of stabilizability and detectability, uniformly with respect to the length

of the sampling interval. -We have shown that this condition can be verified when

zero-order hold sampling is employed and the continuous time system is stabilizable

and detectable by finite rank feedback. We also have a result for parabolic systems,

but this will be reported on elsewhere.

Several interesting open questions related to the results we have presented here

remain open. For example the inter-relation between stabilizability/detectability for

the continuous and sampled time systems in a more general setting and under more

general sampling schemes (A-Stable Pad e, for example) requires further study. Also,

convergence under simultaneous and independent state (space) discretization (i.e.

finite difference or finite element approximation) and temporal sampling should be

investigated. It would not be difficult to extend the results we presented here to

handle certain "coupled" state and time discretizations. Finally, a study similar to

the present one could be carried out for the LQG estimator and compensator problems.

We have not as of yet looked at these problems, but suspect that similar results to

those given above could be obtained.
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Appendix A.

(i) Continuity of Ph: Let ¢ e /2. Then since Ph¢ is constant on each of the
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intervals I i = [jh, (j + 1)h), we have

[IPhCH_h = ft,,h l[(ph¢)(t)li2d t
JO

kf,h-1

hllh-' f, ¢(_)d_tl2
i=O i

kI, h-1

j=O i Jli

- ]""_ t1¢(8)11=d__<11¢11_.
.tO

(ii) Convergence of Ph: First, let us consider a continuous function ¢ E U. Then, for

all t E [0, tf), there exists bo(t) > 0 such that for all h < ho(t), we have t E [0, tl,h ].

That is, for all t C [0, ts],

= h-' [ ¢(,)a_(Ph¢) (t)
dI

for h small enough, where I is an interval of length h containing t. The Bochner

integral is equal to the Rieman integral for continuous functions, and _herefore, for

all t E [0, tf), it follows that

lira (Ph¢)(t) = ¢(t).
h--*0+

Now consider an extrapolation operator, Eh : _/h _-* ?2, defined for all u E /2h

aS: Ehu(t) = u(t), for t E [0, ts.h ], Ehu(t) =-- 0 for t E (tf,h,t]]. It is evident that

(EhPh¢)(t) converges to ¢(t) as h tends to 0 for all t E [O, tf.h). Since

A" II(EhP_¢)(_)II_d_= tlP_¢tluh,

from (i), we conclude, via the dominated convergence theorem, that

lim IIP_¢tluh= II¢llu-
h--*0+

Then from the uniform boundedness of Ph and the density of the continuous functions

in _/, we obtain

lim IIPh¢llu_= IlOllu
h--*0+

holds for all ¢ E _/.

(iii) For all u E _/h we have Ehu C _l, PhEhu = u, and IIPhEhulI"_= IIE_II,.

Appendix B.

We shall show that

h---*0+
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uniformly in s for s E [0, t)], and ¢ E H. Analogous arguments can be used to show

that

lira - P,, , lluo = 0
h-,0-t-

and that

h---* 0+

uniformly in s for s E [0, t f], and each u E U.

From the definitions of _0 and _0 given in (2.2) and (2.11) respectively, it is easy

to observe the following for any ¢ E H.

(i) [[(_,¢)(t)][v is continuous with respect to s for all t _> s. Therefore, from the

uniform boundedness of [[(_,¢)(t)[[v for all 0 < s < t < ty, we conclude that

_,¢ is a continuous function of s in the _/ norm.

(ii) By condition (A1)-(A4), it is easy to see that

• =  ,¢(t)llu

converges to zero, uniformly in /k(2, ty). By the umIorm boundedness of

][_h.s¢(t) []u for all h, we conclude that

converges to zero, uniformly in s.

Since we have

the strong continuity of _,, and the strong convergence of Ph to the identity

on U, yield the desired uniform convergence result.
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